
Upgrade of the humidity extraction system: optimization 

with Arduino Nano and DHT22-AM2302 for advanced 

energy management control. 

Let's get back to the topic of DIY electronics in this new article on officinasottocasa.it, completely revisiting 

our humidity extraction system that you read and appreciated in our previous article on the "Solar-Powered 

Humidity Extractor," updating the hygrostat and the energy management system using a 

temperature/humidity sensor with DHT22-AM2302 connected to an Arduino Nano. 

The reason we decided to revise the system is related to the solar panel's inability to provide sufficient 

energy to the battery and thus ensure the storage of the necessary energy to operate the extraction fans in 

the colder and less illuminated months of the year. Moreover, these are also the rainiest months with more 

humidity problems. 

An alternative to upgrading the entire system could have been expanding the photovoltaic panel and 

accumulator capacity, but the current placement does not allow for it. 

We have therefore decided to activate, when necessary, an additional charging source using the domestic 

power grid. We could have simply inserted a charge maintainer purchased on Amazon for a few tens of 

euros, but it wouldn't have been in the style of officinasottocasaDIY. 

Hardware Components 
Let's start with the components of the extraction system, which, as in the previous version, are as follows: 

• Lead-acid battery 12V 7.2 Ah 

• Voltage regulator for solar panels 20A 

• Fan 12V 2W 

• Solar panel 12V 20W 

Now, let's move on to the components of the CPU: 

• Elegoo Nano 

• OLED SSD1306 128X64 Screen 

• DHT22-AM2302 Module 

• Relay SRD-05VDC-SL-C 

• Variable Step-down with LM2596 

We designed the CPU using the circuit designer available on this website link and created the PCB using the 

connected service link. The designer allows automatic generation of the gerber file for the PCB and sending 

it to the production site. 

Electrical Diagram CPU 

Let's begin with the overview: 



 

Electrical Diagram of the CPU 

To facilitate a detailed analysis of the diagram and maintain a coherent order, we have divided the 

components into specific zones, each corresponding to its function. 

Zone A – Battery Input 

In this zone, we have the contacts for connecting the battery, the voltage divider, and the step-down DC-DC 

converter for powering the board. The two functions of this group are as follows: 

Powering our circuit through a 5V step-down with the integrated LM2596. 

Connecting the battery to the voltage divider to check its charge status and activate additional charging 

through the grid. 

The LM2596 is a popular integrated switching voltage regulator. Equipped with high performance, it is 

widely used to convert DC voltages, ensuring optimal stability and energy efficiency. Suitable for power 

applications in various industries, it provides a reliable and compact solution for voltage control. We 

practically use it in every project. In particular, you saw it in this article: "GSM Alarm for Low Battery – Part 

1: Hardware." 



 

The voltage divider is an essential electronic circuit that divides the voltage in a circuit in proportion to the 

values of the resistors used. This versatile component finds common applications in electronic design, 

allowing precise control of voltage in various contexts, from sensors to amplifiers. For further details, we 

refer to Raffaele Ilardo's website, which you can find in the references. 

 

In this project, we use it to lower the battery voltage to a level compatible with the analog input of the 

Arduino board. In particular, we have inserted a voltage divider (R1=220KΩ and R2=100KΩ) that causes a 

voltage drop from the 12V input from the battery (Vin) to 3.75V (Vout) across R2. 

Zone B – Management of Additional Power Supply 



In this group, we have the contacts for the power supply from the electrical grid and the control relay 

managed by the microcontroller. 

The SRD relay is a versatile electronic component that controls the opening and closing of electrical circuits. 

Its reliability and switching capability make it ideal for controlling loads in various electronic devices, 

ensuring efficient management of electrical connections and increased durability. 

In this project, we use SRD relays with a 5V primary coil as they are controlled through the digital ports of 

the Arduino board. 

 

 



 

You will notice that, with the use of the relay, we have completely isolated our circuit from the 12V charging 

system coming from the electrical grid. The relay operates on the positive pole, while the negative pole has 

only two mounting holes for wire soldering, as it is not in common with the ground of our integrated circuit. 

Zone C – Photovoltaic Panel Management 

In this group, we connect one pole of the photovoltaic panel to another relay. The purpose of this 

connection is to exclude the panel when the system is powered by the electrical grid. This way, we avoid 

overlaps and use exclusive sources without interference between the panel and the power supply. 

Once again, the relay guarantees the isolation of the panel current from that of the circuit. 

Zone D – Extractors Management 

Here is where we manage the activation of the load, which consists of fans for extracting humid air outside. 

The current to operate the fans comes from the charge controller that manages the panel and charges the 

battery. 

Zone E – Operating Indicators 

We have inserted three LEDs that serve as indicators of the relay status. The LEDs, controlled by the 

microcontroller's software, will provide us with information about the relay's excitation status. The 

excitation status of a relay indicates whether it is activated or deactivated. When excited, the relay closes 

the contacts, allowing the passage of current. Upon deactivation, it interrupts the connection. 

DHT22-AM2302 Module 

The DHT22-AM2302 module is a high-performance temperature and humidity sensor, renowned for its 

accuracy in environmental measurements. Characterized by a compact design and a simplified interface, it 



is commonly employed in DIY projects and industrial settings. Its integration with Arduino Nano allows us to 

monitor the humidity level in the air and, based on the parameters defined in the software, activate the 

extractors. 

 

OLED Screen 128X64 

To have all the operating information and any alerts, we have included an OLED display, an advanced 

electronic component with a resolution of 128x64 pixels. Thanks to OLED technology, it provides superior 

sharpness and contrast, making it ideal for displaying text and graphics. The controller is an SSD1306 with 

an I2C interface, which makes it suitable for this type of project. 



 

 

Arduino Nano 

Now let's get to the beating heart of the project. The microcontroller hosting the software we've created, 

governing all the various components. 

This is a Nano clone, not a genuine Arduino, although it's practically identical in terms of pinout, operation, 

and programming to its original counterpart. 



 

They share the same ATMEGA328P chip. The only difference between the originals and clones is the USB-

Serial converter. Clones typically use the CH340G chip, and drivers for this chip are not included in the 

Arduino IDE installation. Therefore, they need to be installed separately. In this article link, you'll find 

information and links to download and install drivers for the CH340G. 

 

For its usage, we'll discuss it more in terms of software in the continuation of the article. 

PCB 

To create the PCB, we started with the electrical schematic. Through EasyEDA's online designer, it's possible 

to translate the electrical schematic into components on the PCB. The arrangement of the components is at 

our discretion. As you can see, we made an effort to maintain the separation between the groups identified 

in the electrical schematic, mainly for aesthetic and organizational reasons. 

We purchased a two-layer FR-4 board with dimensions of 120 by 90 millimeters to integrate it into our 

electronic projects, ensuring reliability and precision in supporting complex circuits. 

For the curious ones, FR-4, an acronym for "Flame Retardant 4," is a composite material often used for PCB 

(Printed Circuit Board) manufacturing. It consists of a base of epoxy glass reinforced with fiberglass, 



impregnated with low-flammability epoxy resin. This material offers excellent dielectric properties, 

mechanical strength, and good workability, making it a common choice for electronic board production. 

 

PCB Layout. In red, the top tracks, and in blue, the bottom ones. 



 

Programming the ATMEGA328P Microcontroller Software 

Until this point, our focus has been exclusively on the hardware aspect of the system. However, it's the 

software that will play the key role in orchestrating the entire system. The correct functioning, effective 

management, and synchronization of hardware components will be guided by our software. 

We use the Arduino prototyping platform (and its clones) because Arduino programming offers intuitive 

access to creating custom electronic projects. The syntax is simple, and there is a wide range of libraries, 

allowing even beginners to quickly develop interactive devices. 

Preliminaries for Programming 

As always, since we need to manage recurrence in the Loop() function, we'll use some binary "dummy" 

variables (0 and 1) that will allow us to cyclically control environmental variables derived from sensor 

readings (humidity and charge level) but perform operations linearly (to clarify, without turning the relays 

on and off every 10 seconds). 

"Dummy variables" are generally used as temporary placeholders or to comply with syntax requirements 

without having a real functional utility in the context of the code. In practice, they are only used to meet the 

structure required by the programming language without being involved in significant operations or 

calculations in the program. The term "dummy" indicates that these variables are used only for temporary 

or formal purposes. 

 



We will also use the watchdog function. This Arduino function refers to the integrated Watchdog Timer in 

AVR microcontrollers (Advanced Virtual RISC), such as those used in Arduino boards (or clones, as in our 

case). This timer is a hardware counter that can be programmed to generate a reset of the microcontroller if 

it is not "fed" regularly by inserting specific instructions in the code (restarting the timer before the set 

countdown ends). The watchdog is used in this project as a safety mechanism to automatically restart the 

microcontroller in case of malfunctions or program freezes. 

Flowchart 

Although the program might seem slightly complex, in essence, it is limited to a few simple steps: 

• Check the humidity level, and if it is above a threshold value, turn on the extraction fans. 

• Check the battery charge level, and if it is below a threshold value, turn on the external power to 

charge the battery. 

 

In the charge control section, we have introduced an upper and lower threshold value. This way, within the 

range between the two threshold values, the relays remain in the previously set position to avoid annoying 

continuous state changes when the values are around the threshold value. 

Libraries 

To enable communication with various I/O peripherals, we first load some libraries. 

 



In Arduino, libraries are sets of predefined code and functions that can be reused to simplify programming 

and interaction with specific hardware components. Libraries contain implementations of common or 

complex routines that can be called in your programs without having to write the code from scratch. 

Libraries in Arduino are essential to make the development environment more accessible and allow users to 

focus on the specific logic of their project without having to manage low-level details. They offer several 

advantages: 

• Code Reusability: You can easily use libraries to manage common functionalities in different projects 

without rewriting the code every time. 

• Code Simplification: Libraries abstract complexity and implementation details, simplifying your main 

code. 

• Simplified User Interface: Libraries often provide a high-level interface that simplifies interaction 

with hardware components. 

• Community and Sharing: The Arduino developer community actively contributes to creating and 

improving libraries, allowing quick sharing of solutions and ideas. 

• Development Speed: Using libraries can speed up the development process, allowing you to focus 

on the specific details of your project. 

For example, if you are working with an OLED screen, you might use the Adafruit_SSD1306 or U8x8 library 

to simplify display management. Include the library in your code, and you can call functions defined by the 

library without writing the low-level code needed to control the OLED screen. 

Let's now take a look at the code: 

 

The code snippet just provided begins with the inclusion of essential libraries for the watchdog, DHT22 

sensor, and OLED display. Subsequently, connection pins for the DHT22 sensor and the OLED display are 

declared. An OLED 128x64 screen and a DHT22 sensor are then initialized, establishing the necessary I2C 

communication for the correct operation of the system. 

Variable Definitions 

In the following code snippet, constants and variables used for system control are declared. Pins for relays 

and LEDs, the reference voltage, the voltage divider pin, and threshold values for voltage and humidity 

readings are defined. The boolean variables fan_state and charge_state indicate the status of the fan and 

battery charge (on/off). They are modified whenever a condition occurs that results in a state change and 



will serve as inputs to display information on our OLED screen. These parameters are crucial for adjusting 

the system's behavior based on environmental and power conditions. 

 

Setup() Function 

The setup() function initializes the Arduino program. It sets the output mode for pins controlling relays and 

LEDs, essential for system control. The DHT sensor is initialized using dht.begin(), and the U8x8 library for 

the OLED display is started with u8x8.begin(). Finally, the watchdog timer (wdt_enable(WDTO_8S)) is 

activated with a timeout of 8 seconds to monitor the correct operation of the program. 

 

Loop() Function 



The loop function of the code cyclically monitors the system. After a 2-second waiting period, it calls the 

functions battery_level, humidity_level, and update_screen. The first function checks and manages the 

battery charge state, the second one monitors and adjusts humidity, while the third one updates the OLED 

display with current values. Additionally, it resets the watchdog timer to prevent a microcontroller reset. 

 

Update_screen() Function 

The update_screen function reads the battery voltage and humidity from the DHT22 sensor, calculates the 

results, and displays them on an OLED screen. It shows the voltage with two decimal places, indicating 

whether the battery is charging from a solar panel or the electrical grid. It displays the humidity with two 

decimal places and indicates whether the extraction fans are in operation or turned off. 



 

battery_level() Function 

The battery_level function measures the voltage of a battery through a voltage divider and checks if it is 

outside the specified thresholds. If the voltage is below the minimum threshold, it activates the relay and 

LED for charging from the electrical grid, turns off the relay and LED for solar charging. If the voltage 

exceeds the maximum threshold, it reverses the operations. The function tracks the charge state with a 

boolean variable.ion fans are in operation or turned off. 



 

humidity_level() 

The humidity_level function reads the humidity from the DHT22 sensor and checks if it is outside the 

predefined thresholds. In case of an error in sensor reading, it displays the error on the screen. If the 

humidity exceeds the maximum threshold, it turns on the relay and the fan LED for extraction. If the 

humidity falls below the minimum threshold, it turns off the relay and the fan LED. The function keeps track 

of the fan state with a boolean variable that is used to report the information on the LED screen. 

 


